Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recent works have demonstrated the effectiveness of machine learning (ML) techniques in detecting anxiety and stress using physiological signals, but it is unclear whether ML models are learning physiological features specific to stress. To address this ambiguity, we evaluated the generalizability of physiological features that have been shown to be correlated with anxiety and stress to high-arousal emotions. Specifically, we examine features extracted from electrocardiogram (ECG) and electrodermal (EDA) signals from the following three datasets: Anxiety Phases Dataset (APD), Wearable Stress and Affect Detection (WESAD), and the Continuously Annotated Signals of Emotion (CASE) dataset. We aim to understand whether these features are specific to anxiety or general to other high-arousal emotions through a statistical regression analysis, in addition to a within-corpus, cross-corpus, and leave-one-corpus-out cross-validation across instances of stress and arousal. We used the following classifiers: Support Vector Machines, LightGBM, Random Forest, XGBoost, and an ensemble of the aforementioned models. We found that models trained on an arousal dataset perform relatively well on a previously unseen stress dataset, and vice versa. Our experimental results suggest that the evaluated models may be identifying emotional arousal instead of stress. This work is the first cross-corpus evaluation across stress and arousal from ECG and EDA signals, contributing new findings about the generalizability of stress detection.more » « less
-
Agents must monitor their partners' affective states continuously in order to understand and engage in social interactions. However, methods for evaluating affect recognition do not account for changes in classification performance that may occur during occlusions or transitions between affective states. This paper addresses temporal patterns in affect classification performance in the context of an infant-robot interaction, where infants’ affective states contribute to their ability to participate in a therapeutic leg movement activity. To support robustness to facial occlusions in video recordings, we trained infant affect recognition classifiers using both facial and body features. Next, we conducted an in-depth analysis of our best-performing models to evaluate how performance changed over time as the models encountered missing data and changing infant affect. During time windows when features were extracted with high confidence, a unimodal model trained on facial features achieved the same optimal performance as multimodal models trained on both facial and body features. However, multimodal models outperformed unimodal models when evaluated on the entire dataset. Additionally, model performance was weakest when predicting an affective state transition and improved after multiple predictions of the same affective state. These findings emphasize the benefits of incorporating body features in continuous affect recognition for infants. Our work highlights the importance of evaluating variability in model performance both over time and in the presence of missing data when applying affect recognition to social interactions.more » « less
-
Observing how infants and mothers coordinate their behaviors can highlight meaningful patterns in early communication and infant development. While dyads often differ in the modalities they use to communicate, especially in the first year of life, it remains unclear how to capture coordination across multiple types of behaviors using existing computational models of interpersonal synchrony. This paper explores Dynamic Mode Decomposition with control (DMDc) as a method of integrating multiple signals from each communicating partner into a model of multimodal behavioral coordination. We used an existing video dataset to track the head pose, arm pose, and vocal fundamental frequency of infants and mothers during the Face-to-Face Still-Face (FFSF) procedure, a validated 3-stage interaction paradigm. For each recorded interaction, we fit both unimodal and multimodal DMDc models to the extracted pose data. The resulting dynamic characteristics of the models were analyzed to evaluate trends in individual behaviors and dyadic processes across infant age and stages of the interactions. Results demonstrate that observed trends in interaction dynamics across stages of the FFSF protocol were stronger and more significant when models incorporated both head and arm pose data, rather than a single behavior modality. Model output showed significant trends across age, identifying changes in infant movement and in the relationship between infant and mother behaviors. Models that included mothers’ audio data demonstrated similar results to those evaluated with pose data, confirming that DMDc can leverage different sets of behavioral signals from each interacting partner. Taken together, our results demonstrate the potential of DMDc toward integrating multiple behavioral signals into the measurement of multimodal interpersonal coordination.more » « less
-
As improvements in medicine lower infant mortality rates, more infants with neuromotor challenges survive past birth. The motor, social, and cognitive development of these infants are closely interrelated, and challenges in any of these areas can lead to developmental differences. Thus, analyzing one of these domains - the motion of young infants - can yield insights on developmental progress to help identify individuals who would benefit most from early interventions. In the presented data collection, we gathered day-long inertial motion recordings from N = 12 typically developing (TD) infants and N = 24 infants who were classified as at risk for developmental delays (AR) due to complications at or before birth. As a first research step, we used simple machine learning methods (decision trees, k-nearest neighbors, and support vector machines) to classify infants as TD or AR based on their movement recordings and demographic data. Our next aim was to predict future outcomes for the AR infants using the same simple classifiers trained from the same movement recordings and demographic data. We achieved a 94.4% overall accuracy in classifying infants as TD or AR, and an 89.5% overall accuracy predicting future outcomes for the AR infants. The addition of inertial data was much more important to producing accurate future predictions than identification of current status. This work is an important step toward helping stakeholders to monitor the developmental progress of AR infants and identify infants who may be at the greatest risk for ongoing developmental challenges.more » « less
An official website of the United States government

Full Text Available